一些简单的代数运算题
1. 设 $m,n\in\mathbb{R}$, 已知 $(m+\sqrt{m^2+1})(n+\sqrt{n^2+1})=1$, 证明 $m+n=0$.
2. 解方程组
\[
\begin{cases}
x^3+y^3=5,\\
x^2+y^2=3.
\end{cases}
\]
1. 设 $m,n\in\mathbb{R}$, 已知 $(m+\sqrt{m^2+1})(n+\sqrt{n^2+1})=1$, 证明 $m+n=0$.
2. 解方程组
\[
\begin{cases}
x^3+y^3=5,\\
x^2+y^2=3.
\end{cases}
\]
1
\[
(\sqrt{m^2+1}+m)(\sqrt{m^2+1}-m)=1,
\]
因此 $\sqrt{n^2+1}+n=\sqrt{m^2+1}-m$. 当然, 我们可以直接猜出 $n=-m$ 是一个解.
由该等式,
\[
\begin{split}
&n+m=\sqrt{m^2+1}-\sqrt{n^2+1}\\
\Rightarrow\ &(n+m)^2=(m^2+1)+(n^2+1)-2\sqrt{(m^2+1)(n^2+1)}\\
\Rightarrow\ &\sqrt{(m^2+1)(n^2+1)}=1-mn\\
\Rightarrow\ &(m^2+1)(n^2+1)=1-2mn+m^2 n^2\\
\Rightarrow\ &m^2+n^2=-2mn\\
\Rightarrow\ &(m+n)^2=0\\
\Rightarrow\ &m+n=0.
\end{split}
\]
2
可以解出
\[
\begin{cases}
x+y=2,\\
xy=\frac{1}{2}.
\end{cases}\qquad
\begin{cases}
x+y=-1+\sqrt{6},\\
xy=2-\sqrt{6}.
\end{cases}\qquad
\begin{cases}
x+y=-1-\sqrt{6},\\
xy=2+\sqrt{6}.
\end{cases}
\]
从而
\[
\begin{cases}
x=1+\frac{\sqrt{2}}{2},\\
y=1-\frac{\sqrt{2}}{2}.
\end{cases}
\]
另外的解请补充.
3
令√(