求不定积分 $\int\frac{\ln(1-\sqrt{1-x})}{x}\mathrm{d}x$.
求不定积分 $\int\frac{\ln(1-\sqrt{1-x})}{x}\mathrm{d}x$.
求不定积分 $\int\frac{\ln(1-\sqrt{1-x})}{x}\mathrm{d}x$.
1
令 $t=\ln(1-\sqrt{1-x})$, 则 $\sqrt{1-x}=1-e^t$,
\[
1-x=(1-e^t)^2\quad\Rightarrow\quad x=2e^t-e^{2t}.
\]
于是 $\mathrm{d}x=2e^t(1-e^t)\mathrm{d}t$.
\[
\begin{split}
\text{原积分}&=\int\frac{t}{2e^t-e^{2t}}\cdot 2e^t(1-e^t)\mathrm{d}t\\
&=\int\frac{2t(1-e^t)}{2-e^t}\mathrm{d}t\\
&=\int 2t\mathrm{d}t+\int\frac{2t}{e^t-2}\mathrm{d}t\\
&=t^2+2\int\frac{t}{e^t-2}\mathrm{d}t,
\end{split}
\]
其中
\[
\begin{split}
\int\frac{t}{e^t-2}\mathrm{d}t&=\\
&=
\end{split}
\]