求 $\int\frac{x^2}{1+\cos x}\mathrm{d}x$
求下列不定积分
$\displaystyle\int\frac{x^2}{1+\cos x}\mathrm{d}x$
$\displaystyle\int\frac{x^2}{\sin^2 x}\mathrm{d}x$
$\displaystyle\int\frac{4}{3+\cos 4x}\mathrm{d}x$
求下列不定积分
$\displaystyle\int\frac{x^2}{1+\cos x}\mathrm{d}x$
$\displaystyle\int\frac{x^2}{\sin^2 x}\mathrm{d}x$
$\displaystyle\int\frac{4}{3+\cos 4x}\mathrm{d}x$
1
\[
\int\frac{4}{3+\cos 4x}\mathrm{d}x=\int\frac{1}{3+\cos 4x}\mathrm{d}(4x)=\int\frac{1}{3+\cos u}\mathrm{d}u.
\]
上面最后一个等号是令 $u=4x$. 然后利用万能代换, 令 $t=\tan\frac{u}{2}$, 则 $\sin u=\frac{2t}{1+t^2}$, $\cos u=\frac{1-t^2}{1+t^2}$, $\mathrm{d}u=\mathrm{d}(2\arctan t)=\frac{2}{1+t^2}\mathrm{d}t$得
\[
\begin{split}
\int\frac{1}{3+\cos u}\mathrm{d}u&=\int\frac{1}{3+\frac{1-t^2}{1+t^2}}\cdot\frac{2}{1+t^2}\mathrm{d}t\\
&=\int\frac{2}{2t^2+4}\mathrm{d}t=\int\frac{1}{t^2+2}\mathrm{d}t\\
&=\frac{1}{\sqrt{2}}\arctan\frac{t}{\sqrt{2}}+C\\
&=\frac{1}{\sqrt{2}}\arctan\frac{\tan(2x)}{\sqrt{2}}+C.
\end{split}
\]