我们取 $\mathbb{R}^{n+1}$ 上的正交坐标系 $(x_1,y_1,\ldots,x_k,y_k,z_1,\ldots,z_s)$, 使得 $f(x,y,z)=(x',y',z')$, 其中
\[
\begin{aligned}
x'_i&=x_i\cos\alpha_i+y_i\sin\alpha_i,\\
y'_i&=-x_i\sin\alpha_i+y_i\cos\alpha_i,\\
z'_i&=\pm z_i.
\end{aligned}
\]
容易验证 $(x,y,z)$ 与 $f(x,y,z)$ 之间的平方欧氏距离为
\[
2\Bigl(\sum_{i=1}^{k}(x_i^2+y_i^2)(1-\cos\alpha_i)+\sum_{j=1}^{s}\varepsilon_j z_j^2\Bigr),
\]
这里 $\varepsilon_i=0$ 或 $1$.
具体的, 若记 $d=\mathrm{dist}((x,y,z),f(x,y,z))$, 则
\[
\begin{split}
d^2&=\sum_{i=1}^{k}\bigl[(x'_i-x_i)^2+(y'_i-y_i)^2\bigr]+\sum_{i=1}^{s}(z'_i-z_i)^2\\
&=\sum_{i=1}^{k}\Bigl[(x_i\cos\alpha_i+y_i\sin\alpha_i-x_i)^2+(-x_i\sin\alpha_i+y_i\cos\alpha_i-y_i)^2\Bigr]+\sum_{i=1}^{s}(\pm z_i-z_i)^2\\
&=\sum_{i=1}^{k}\Bigl[(\cos\alpha_i-1)^2 x_i^2+2(\cos\alpha_i-1)x_i y_i\sin\alpha_i+y_i^2\sin^2\alpha_i+x_i^2\sin^2\alpha_i-2x_i\sin\alpha_i(\cos\alpha_i-1)y_i+(\cos\alpha_i-1)^2 y_i^2\Bigr]+2\sum_{j=1}^{s}\varepsilon_j z_j^2\\
&=\sum_{i=1}^{k}\Bigl[x_i^2(\cos^2\alpha_i-2\cos\alpha_i+1+\sin^2\alpha_i)+y_i^2(\sin^2\alpha_i+\cos^2\alpha_i-2\cos\alpha_i+1)\Bigr]+2\sum_{j=1}^{s}\varepsilon_j z_j^2\\
&=\sum_{i=1}^{k}\Bigl[2(1-\cos\alpha_i)x_i^2+2(1-\cos\alpha_i)y_i^2\Bigr]+2\sum_{j=1}^{s}\varepsilon_j z_j^2\\
&=2\biggl[\sum_{i=1}^{k}\Bigl((x_i^2+y_i^2)(1-\cos\alpha_i)\Bigr)+\sum_{j=1}^{s}\varepsilon_j z_j^2\biggr]
\end{split}
\]
所有满足下面方程
\[
\sum_{i=1}^{k}(x_i^2+y_i^2)+\sum_{j=1}^{s}z_j^2=1
\]
的点(即球面 $S^n$ 上的点), 根据 Clifford 平移的定义, 其到 $f$ 映射下的像的平方欧氏距离必为常数.
于是仅有下面两种可能:
- (i) $k=0$, 且 $\varepsilon_1=\cdots=\varepsilon_s=\pm 1$;
- (ii) $s=0$, 且 $\cos\alpha_1=\cdots=\cos\alpha_k$.
情形 (i) 对应平凡 Clifford 平移. 情形 (ii) 中, 变换对应的矩阵即定理中所述. 证毕.