令 $I(\alpha)=\displaystyle\int_0^1\dfrac{\ln(1+\alpha x)}{1+x^2}\mathrm{d}x$, $\alpha\in[0,1]$.
显然 $I(0)=0$. $I(1)$ 即所求. 现在计算 $I'(\alpha)$, 然后通过 Newton-Leibniz 公式求出 $I(1)$.
由于 $x\in(-1,1]$, 且 $\alpha\in[0,1]$, 故 $\ln(1+\alpha x)$ 可以展开成幂级数, 然后对于积分 $\displaystyle\int_0^1\dfrac{\ln(1+\alpha x)}{1+x^2}\mathrm{d}x$ 在收敛区间 $(-1,1)$ 内可以采用逐项求导.
\[
\begin{split}
I'(\alpha)&=\int_0^1\frac{\mathrm{d}}{\mathrm{d}\alpha}(\frac{\ln(1+\alpha x)}{1+x^2})\mathrm{d}x\\
&=\int_0^1\frac{1}{1+x^2}\cdot\frac{x}{1+\alpha x}\mathrm{d}x\\
&=\frac{1}{\alpha+\frac{1}{\alpha}}\int_0^1\biggl(\frac{1+\frac{1}{\alpha}x}{1+x^2}-\frac{1}{1+\alpha x}\biggr)\mathrm{d}x\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\int_0^1\frac{1}{1+x^2}\mathrm{d}x+\frac{1}{\alpha}\int_0^1\frac{x\mathrm{d}x}{1+x^2}-\int_0^1\frac{1}{1+\alpha x}\mathrm{d}x\biggr]\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\arctan x\biggr|_0^1+\frac{1}{2\alpha}\ln(1+x^2)\biggr|_0^1-\frac{1}{\alpha}\ln(1+\alpha x)\biggr|_0^1\biggr]\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\frac{\pi}{4}+\frac{1}{2\alpha}\cdot\ln 2-\frac{1}{\alpha}\ln(1+\alpha)\biggr]\\
&=\frac{\pi}{4}\cdot\frac{\alpha}{1+\alpha^2}+\frac{\ln 2}{2}\cdot\frac{1}{1+\alpha^2}-\frac{\ln(1+\alpha)}{1+\alpha^2}.
\end{split}
\]
因此, 由 Newton-Leibniz 公式,
\[
\begin{split}
I(1)&=\int_0^1 I'(\alpha)\mathrm{d}\alpha\\
&=\frac{\pi}{4}\cdot\int_0^1\frac{\alpha}{1+\alpha^2}\mathrm{d}\alpha+\frac{\ln 2}{2}\cdot\int_0^1\frac{1}{1+\alpha^2}\mathrm{d}\alpha-\int_0^1\frac{\ln(1+\alpha)}{1+\alpha^2}\mathrm{d}\alpha\\
&=\frac{\pi}{4}\cdot\frac{1}{2}\ln(1+\alpha^2)\biggr|_{\alpha=0}^{1}+\frac{\ln 2}{2}\cdot\arctan\alpha\biggr|_0^1-I(1)\\
&=\frac{\pi}{4}\cdot\frac{\ln 2}{2}+\frac{\ln 2}{8}\pi-I(1)
\end{split}
\]
这推出 $I(1)=\dfrac{\ln 2}{8}\pi$.