Answer

问题及解答

求定积分 $\displaystyle\int_0^1\dfrac{\ln(1+x)}{1+x^2}\mathrm{d}x$.

Posted by haifeng on 2021-01-07 09:03:16 last update 2021-07-17 22:23:51 | Edit | Answers (3)

求定积分 $\displaystyle\int_0^1\dfrac{\ln(1+x)}{1+x^2}\mathrm{d}x$.

 

[Hint] 令 $t=\dfrac{1-x}{1+x}$ 或 $x=\dfrac{1-t}{1+t}$.  (by 梅加强老师)

 

[Hint] 如果用逐项求导的办法, 则可以考虑

\[
I(\alpha)=\int_0^1\frac{\ln(1+\alpha x)}{1+x^2}\mathrm{d}x,
\]

计算 $I'(\alpha)$.   (by 李军) 

Remark: 据说这种方法源自物理学家费因曼. (2021-07-17)

 


Remark:

 

\[
\int_0^1\dfrac{\ln(1+x)}{1+x^2}\mathrm{d}x=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\int_{0}^{\frac{\pi}{4}}\tan^n\theta\mathrm{d}\theta.
\]

 

若令 $I_n=\displaystyle\int_{0}^{\dfrac{\pi}{4}}\tan^n\theta\mathrm{d}\theta$, 则有递推关系 $I_n=\dfrac{1}{n-1}-I_{n-2}$, ($n\geqslant 2$).  参加问题2679.

1

Posted by haifeng on 2021-01-07 10:12:55

令 $x=\dfrac{1-t}{1+t}$, 则 $t=\dfrac{1-x}{1+x}=\dfrac{2}{1+x}-1$, (变换单调递减, 合理.)  当 $x=0$ 时, $t=1$; 当 $x=1$ 时, $t=0$.

\[
\mathrm{d}x=\mathrm{d}(\frac{1-t}{1+t})=\frac{-1\cdot(1+t)-(1-t)\cdot 1}{(1+t)^2}\mathrm{d}t=\frac{-2}{(1+t)^2}\mathrm{d}t
\]

\[
\begin{split}
\int_0^1\frac{\ln(1+x)}{1+x^2}\mathrm{d}x&=\int_1^0\dfrac{\ln(1+\frac{1-t}{1+t})}{1+(\frac{1-t}{1+t})^2}\cdot\frac{-2}{(1+t)^2}\mathrm{d}t\\
&=\int_0^1\frac{\ln\frac{2}{1+t}}{1+t^2}\mathrm{d}t\\
&=\int_0^1\frac{\ln 2}{1+t^2}\mathrm{d}t-\int_0^1\frac{\ln(1+t)}{1+t^2}\mathrm{d}t
\end{split}
\]

因此,

\[
\begin{split}
\int_0^1\frac{\ln(1+x)}{1+x^2}\mathrm{d}x&=\frac{\ln 2}{2}\cdot\int_0^1\frac{1}{1+t^2}\mathrm{d}t\\
&=\frac{\ln 2}{2}\cdot(\arctan t\biggr|_0^1)\\
&=\frac{\ln 2}{2}\cdot\frac{\pi}{4}\\
&=\frac{\ln 2}{8}\pi.
\end{split}
\]

2

Posted by haifeng on 2021-01-07 11:37:59

令 $I(\alpha)=\displaystyle\int_0^1\dfrac{\ln(1+\alpha x)}{1+x^2}\mathrm{d}x$,  $\alpha\in[0,1]$.

显然 $I(0)=0$. $I(1)$ 即所求. 现在计算 $I'(\alpha)$, 然后通过 Newton-Leibniz 公式求出 $I(1)$.

 

由于 $x\in(-1,1]$, 且 $\alpha\in[0,1]$, 故 $\ln(1+\alpha x)$ 可以展开成幂级数, 然后对于积分 $\displaystyle\int_0^1\dfrac{\ln(1+\alpha x)}{1+x^2}\mathrm{d}x$ 在收敛区间 $(-1,1)$ 内可以采用逐项求导.

\[
\begin{split}
I'(\alpha)&=\int_0^1\frac{\mathrm{d}}{\mathrm{d}\alpha}(\frac{\ln(1+\alpha x)}{1+x^2})\mathrm{d}x\\
&=\int_0^1\frac{1}{1+x^2}\cdot\frac{x}{1+\alpha x}\mathrm{d}x\\
&=\frac{1}{\alpha+\frac{1}{\alpha}}\int_0^1\biggl(\frac{1+\frac{1}{\alpha}x}{1+x^2}-\frac{1}{1+\alpha x}\biggr)\mathrm{d}x\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\int_0^1\frac{1}{1+x^2}\mathrm{d}x+\frac{1}{\alpha}\int_0^1\frac{x\mathrm{d}x}{1+x^2}-\int_0^1\frac{1}{1+\alpha x}\mathrm{d}x\biggr]\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\arctan x\biggr|_0^1+\frac{1}{2\alpha}\ln(1+x^2)\biggr|_0^1-\frac{1}{\alpha}\ln(1+\alpha x)\biggr|_0^1\biggr]\\
&=\frac{\alpha}{1+\alpha^2}\cdot\biggl[\frac{\pi}{4}+\frac{1}{2\alpha}\cdot\ln 2-\frac{1}{\alpha}\ln(1+\alpha)\biggr]\\
&=\frac{\pi}{4}\cdot\frac{\alpha}{1+\alpha^2}+\frac{\ln 2}{2}\cdot\frac{1}{1+\alpha^2}-\frac{\ln(1+\alpha)}{1+\alpha^2}.
\end{split}
\]

因此, 由 Newton-Leibniz 公式,

\[
\begin{split}
I(1)&=\int_0^1 I'(\alpha)\mathrm{d}\alpha\\
&=\frac{\pi}{4}\cdot\int_0^1\frac{\alpha}{1+\alpha^2}\mathrm{d}\alpha+\frac{\ln 2}{2}\cdot\int_0^1\frac{1}{1+\alpha^2}\mathrm{d}\alpha-\int_0^1\frac{\ln(1+\alpha)}{1+\alpha^2}\mathrm{d}\alpha\\
&=\frac{\pi}{4}\cdot\frac{1}{2}\ln(1+\alpha^2)\biggr|_{\alpha=0}^{1}+\frac{\ln 2}{2}\cdot\arctan\alpha\biggr|_0^1-I(1)\\
&=\frac{\pi}{4}\cdot\frac{\ln 2}{2}+\frac{\ln 2}{8}\pi-I(1)
\end{split}
\]

这推出 $I(1)=\dfrac{\ln 2}{8}\pi$.

3

Posted by haifeng on 2021-01-07 20:33:39

\[
\begin{split}
\int_0^1\frac{\ln(1+x)}{1+x^2}\mathrm{d}x&=\int_0^1\frac{1}{1+x^2}\cdot\biggl(\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}x^n\biggr)\mathrm{d}x\\
&=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\int_0^1\frac{x^n}{1+x^2}\mathrm{d}x\\
&=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\int_0^1 x^n\mathrm{d}\arctan x\\
\end{split}
\]

令 $\theta=\arctan x$, 则 $x=\tan\theta$. 于是

\[
\int_0^1\frac{\ln(1+x)}{1+x^2}\mathrm{d}x=\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{n}\int_{0}^{\frac{\pi}{4}}\tan^n\theta\mathrm{d}\theta.
\]