Answer

问题及解答

魏尔斯特拉斯(Weierstrass) $\mathscr{P}$-函数

Posted by haifeng on 2020-12-17 10:07:28 last update 2023-04-14 14:47:07 | Edit | Answers (1)

取复平面 $\mathbb{C}$ 之上半平面中一点 $\tau$, 即要求 $\mathrm{Im}\tau > 0$. 由此定义了一个格

\[
\Lambda_{\tau}:=\{m+n\tau\mid m,n\in\mathbb{Z}\}=\mathbb{Z}+\mathbb{Z}\tau.
\]

 

魏尔斯特拉斯(Weierstrass) $\mathscr{P}$-函数定义为

\[
\mathscr{P}(z):=\frac{1}{z^2}+\sum_{(m,n)\neq(0,0)}\biggl(\frac{1}{\bigl(z-(m\tau+n)\bigr)^2}-\frac{1}{(m\tau+n)^2}\biggr)
\]

这里 $\tau\in\mathbb{C}$, $\mathrm{Im}\tau > 0$, $m,n\in\mathbb{Z}$.

或者写为

\[
\mathscr{P}(z):=\frac{1}{z^2}+\sum_{w\in\Lambda_{\tau}\\ w\neq 0}\Bigl(\frac{1}{(z-w)^2}-\frac{1}{w^2}\Bigr)
\]

证明 Weierstrass $\mathscr{P}$-函数 是 $\mathbb{C}$ 上的亚纯函数. 

在格 $\Lambda_{\tau}$ 上正好有 2 阶极点. 

$\mathscr{P}$-函数具有周期 $\Lambda_{\tau}$, 即

\[
\mathscr{P}(z+w)=\mathscr{P}(z),\quad\forall\ w\in\Lambda_{\tau}.
\]

 

Weierstrass $\mathscr{P}$-函数满足微分方程

\[
(\mathscr{P}')^2=4\mathscr{P}^3-g_2\mathscr{P}-g_3,
\]

其中

\[
\begin{aligned}
g_2&=60\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\frac{1}{\omega^4}=60\sum_{(m,n)\neq(0,0)}\frac{1}{(m\tau+n)^4},\\
g_3&=140\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\frac{1}{\omega^6}=140\sum_{(m,n)\neq(0,0)}\frac{1}{(m\tau+n)^6},
\end{aligned}
\]

为复数.

 


参考自[1] P.11-12

 


References:

[1] Klaus Hulek 著, 胥鸣伟 译 《初等代数几何》 高等教育出版社.

 

1

Posted by haifeng on 2020-12-17 11:06:14

$\mathscr{P}(z)$ 的双周期性由定义即可推出. (直观上, 从格就可以看出.)

具体的计算验证如下,

对于 ${\bf w}=0$, 显然 $\mathscr{P}(z+{\bf w})=\mathscr{P}(z)$. 下设 $0\neq w\in\Lambda_{\tau}$, 则由 Weierstrass $\mathscr{P}$ 的定义, 

\[
\begin{split}
\mathscr{P}(z+{\bf w})&=\frac{1}{(z+{\bf w})^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\Bigl[\frac{1}{\bigl((z+{\bf w})-\omega\bigr)^2}-\frac{1}{\omega^2}\Bigr]\\
&=\frac{1}{(z+{\bf w})^2}+\frac{1}{\bigl((z+{\bf w})-{\bf w}\bigr)^2}-\frac{1}{{\bf w}^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0,{\bf w}}\Bigl[\frac{1}{\bigl((z+{\bf w})-\omega\bigr)^2}-\frac{1}{\omega^2}\Bigr]\\
&=\frac{1}{z^2}+\frac{1}{(z-(-{\bf w}))^2}-\frac{1}{(-{\bf w})^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0,{\bf w}}\Bigl[\frac{1}{\bigl(z-(\omega-{\bf w})\bigr)^2}-\frac{1}{\omega^2}\Bigr]\\
&=\frac{1}{z^2}+\frac{1}{(z-(-{\bf w}))^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0,{\bf w}}\frac{1}{\bigl(z-(\omega-{\bf w})\bigr)^2}-\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0,{\bf w}}\frac{1}{\omega^2}-\frac{1}{(-{\bf w})^2}\\
&=\frac{1}{z^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\frac{1}{(z-\omega)^2}-\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\frac{1}{\omega^2}\\
&=\frac{1}{z^2}+\sum_{\omega\in\Lambda_{\tau}\\ \omega\neq 0}\Bigl(\frac{1}{(z-\omega)^2}-\frac{1}{\omega^2}\Bigr)\\
&=\mathscr{P}(z)
\end{split}
\]