7. (4)
首先计算两条曲线的交点.
\[
\begin{cases}
y&=x^2+7,\\
y&=3x^2+5.
\end{cases}\quad\Rightarrow\quad 3x^2+5=x^2+7\quad\Rightarrow x^2=1
\]
因此 $x=\pm 1$. 两曲线的交点为 $(\pm 1, 8)$.
若记 $y_1=3x^2+5$, $y_2=x^2+7$, 则这两条曲线所围图形绕 $x$ 轴旋转所得旋转体的体积为:
\[
\begin{split}
V&=\int_{-1}^{1}(\pi y_2^2-\pi y_1^2)\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[(x^2+7)^2-(3x^2+5)^2\Bigr]\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[x^4+14x^2+49-(9x^4+30x^2+25)\Bigr]\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[-8x^4-16x^2+24\Bigr]\mathrm{d}x\\
&=-16\pi\int_{0}^{1}\Bigl[x^4+2x^2-3\Bigr]\mathrm{d}x\\
&=-16\pi\cdot\Bigl[\frac{1}{5}x^5+\frac{2}{3}x^3-3x\Bigr]\biggr|_{0}^{1}\\
&=-16\pi\cdot(\frac{1}{5}+\frac{2}{3}-3)\\
&=\frac{512}{15}\pi^2.
\end{split}
\]