Answer

问题及解答

[Homework] 6.2

Posted by haifeng on 2020-12-14 19:14:30 last update 2020-12-14 19:14:30 | Edit | Answers (3)

P. 264--266    习题 6.2


7. 求由下列各组曲线或直线所围成的平面图形, 绕指定的轴旋转所构成的旋转体的体积:

(4)  $y=x^2+7$ 及 $y=3x^2+5$, 绕 $x$ 轴.

 

 

 

9.  求由抛物线 $y^2=2x$ 与直线 $x=\frac{1}{2}$ 所围成的图形绕直线 $y=-1$ 旋转所得旋转体的体积.

 

 

 

14. 求下列曲线在指定范围内的一段弧的长度.

(6)    $\displaystyle y=\int_{-\frac{\pi}{2}}^{x}\sqrt{\cos x}\mathrm{d}x$,  $-\frac{\pi}{2}\leqslant x\leqslant\frac{\pi}{2}$.

 

1

Posted by haifeng on 2020-12-14 19:57:27

7. (4)

首先计算两条曲线的交点.

\[
\begin{cases}
y&=x^2+7,\\
y&=3x^2+5.
\end{cases}\quad\Rightarrow\quad 3x^2+5=x^2+7\quad\Rightarrow x^2=1
\]

因此 $x=\pm 1$. 两曲线的交点为 $(\pm 1, 8)$.

若记 $y_1=3x^2+5$, $y_2=x^2+7$, 则这两条曲线所围图形绕 $x$ 轴旋转所得旋转体的体积为:

\[
\begin{split}
V&=\int_{-1}^{1}(\pi y_2^2-\pi y_1^2)\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[(x^2+7)^2-(3x^2+5)^2\Bigr]\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[x^4+14x^2+49-(9x^4+30x^2+25)\Bigr]\mathrm{d}x\\
&=2\pi\int_{0}^{1}\Bigl[-8x^4-16x^2+24\Bigr]\mathrm{d}x\\
&=-16\pi\int_{0}^{1}\Bigl[x^4+2x^2-3\Bigr]\mathrm{d}x\\
&=-16\pi\cdot\Bigl[\frac{1}{5}x^5+\frac{2}{3}x^3-3x\Bigr]\biggr|_{0}^{1}\\
&=-16\pi\cdot(\frac{1}{5}+\frac{2}{3}-3)\\
&=\frac{512}{15}\pi^2.
\end{split}
\]

2

Posted by haifeng on 2020-12-14 20:13:11

9. 

先求直线 $x=\frac{1}{2}$ 与抛物线 $y^2=2x$ 的交点.

将 $x=\frac{1}{2}$ 代入抛物线方程 $y^2=2x$, 得 $y^2=2\cdot\frac{1}{2}=1$, 故 $y=\pm 1$. 因此两交点为 $(\frac{1}{2},\pm 1)$.

由此直线与抛物线所围成区域绕直线 $y=-1$ 旋转一周所得得旋转体体积为

\[
\begin{split}
V&=\int_{0}^{\frac{1}{2}}\Bigl[\pi(1+\sqrt{2x})^2-\pi(1-\sqrt{2x})^2\Bigr]\mathrm{d}x\\
&=\pi\cdot\int_{0}^{\frac{1}{2}}4\sqrt{2x}\mathrm{d}x\\
&=4\sqrt{2}\pi\cdot\int_{0}^{\frac{1}{2}}\sqrt{x}\mathrm{d}x\\
&=4\sqrt{2}\pi\cdot(\frac{2}{3}x^{\frac{3}{2}})\biggr|_{0}^{\frac{1}{2}}\\
&=\frac{8\sqrt{2}}{3}\pi\cdot(\frac{1}{2})^{\frac{3}{2}}\\
&=\frac{8\sqrt{2}}{3}\pi\cdot\frac{1}{2\sqrt{2}}\\
&=\frac{4}{3}\pi.
\end{split}
\]

3

Posted by haifeng on 2020-12-14 20:18:58

14.  (6)

\[
y=y(x)=\int_{-\frac{\pi}{2}}^{x}\sqrt{\cos x}\mathrm{d}x,\quad\Rightarrow\quad y'(x)=\sqrt{\cos x}.
\]

因此该曲线在 $x\in[-\frac{\pi}{2},\frac{\pi}{2}]$ 上的弧长为

\[
\begin{split}
s&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\sqrt{1+(y'(x))^2}\mathrm{d}x\\
&=2\int_{0}^{\frac{\pi}{2}}\sqrt{1+\cos x}\mathrm{d}x\\
&=2\int_{0}^{\frac{\pi}{2}}\sqrt{2\cos^2\frac{x}{2}}\mathrm{d}x\\
&=2\sqrt{2}\cdot\int_{0}^{\frac{\pi}{2}}\cos\frac{x}{2}\mathrm{d}x\\
&=2\sqrt{2}\cdot(2\sin\frac{x}{2})\biggr|_{0}^{\frac{\pi}{2}}\\
&=2\sqrt{2}\cdot 2\cdot\frac{\sqrt{2}}{2}\\
&=4.
\end{split}
\]