Answer

问题及解答

求极限 $\lim\limits_{n\rightarrow\infty}\dfrac{n^{k}-(n-1)^k}{n^{k-1}}$.

Posted by haifeng on 2020-10-30 13:45:12 last update 2020-10-30 13:45:12 | Edit | Answers (1)

求极限 $\lim\limits_{n\rightarrow\infty}\dfrac{n^{k}-(n-1)^k}{n^{k-1}}$.

1

Posted by haifeng on 2020-10-30 13:51:42

由二项式展开

\[
(n-1)^k=n^k+\sum_{i=0}^{k-1}C_k^i (-1)^{k-i}n^i
\]

因此

\[
n^k-(n-1)^k=(-1)\cdot\sum_{i=0}^{k-1}C_k^i (-1)^{k-i}n^i
\]

这推出

\[
\begin{split}
\lim_{n\rightarrow\infty}\frac{n^k-(n-1)^k}{n^{k-1}}&=\lim_{n\rightarrow\infty}(-1)\cdot\sum_{i=0}^{k-1}C_k^i (-1)^{k-i}\cdot\frac{n^i}{n^{k-1}}\\
&=(-1)\cdot C_k^{k-1}\cdot(-1)^{k-(k-1)}\\
&=k
\end{split}
\]