Answer

问题及解答

[Homework] 2.3

Posted by haifeng on 2020-10-26 20:34:17 last update 2020-10-26 20:34:17 | Edit | Answers (3)

P.85 习题 2.3


2.  设 $f(x)$ 二阶可导, 求下列函数的二阶导数

(1)  $y=f(\frac{1}{x})$

 

4.  求下列函数的 $n$ 阶导数

(4)  $y=\sin^4 x+\cos^4 x$

 

(6)  $y=\frac{1}{x^2-1}$

1

Posted by haifeng on 2020-10-28 11:26:57

2.  (1)

\[y'=f'(\frac{1}{x})\cdot\frac{-1}{x^2}\]

\[
\begin{split}
y''&=f''(\frac{1}{x})\cdot\frac{-1}{x^2}\cdot\frac{-1}{x^2}+f'(\frac{1}{x})\cdot\frac{1}{x^4}\cdot 2x\\
&=\frac{1}{x^4}f''(\frac{1}{x})+\frac{2}{x^3}f'(\frac{1}{x})
\end{split}
\]

2

Posted by haifeng on 2020-10-28 11:53:47

4.  (4)

\[
\begin{split}
y&=(\sin^2 x+\cos^2 x)^2-2\sin^2 x\cdot\cos^2 x\\
&=1-\frac{1}{2}(2\sin x\cdot\cos x)^2\\
&=1-\frac{1}{2}\sin^2(2x)\\
&=1-\frac{1}{2}\cdot\frac{1-\cos 4x}{2}\\
&=\frac{3}{4}+\frac{1}{4}\cos 4x
\end{split}
\]

于是 

\[
\begin{aligned}
y'&=\frac{1}{4}\cdot(-\sin 4x)\cdot 4=-\sin 4x\\
y''&=-4\cos 4x=-4\sin(4x+\frac{\pi}{2})\\
y'''&=-4^2\cos(4x+\frac{\pi}{2})=-4^2\sin(4x+2\cdot\frac{\pi}{2})\\
y^{(4)}&=-4^3\cos(4x+2\cdot\frac{\pi}{2})=-4^3\sin(4x+3\cdot\frac{\pi}{2})\\
&\vdots
\end{aligned}
\]

因此, 可以归纳假设

\[
y^{(n)}=-4^{n-1}\cdot\sin\bigl(4x+(n-1)\frac{\pi}{2}\bigr).
\]

假设 $n=k$ 时上式成立, 则对于 $n=k+1$

\[
\begin{split}
y^{(k+1)}&=(y^{k})'=\Big[-4^{k-1}\cdot\sin\bigl(4x+(k-1)\frac{\pi}{2}\bigr)\Bigr]'\\
&=-4^{k}\cdot\cos\bigl(4x+(k-1)\frac{\pi}{2}\bigr)\\
&=-4^{k}\cdot\sin\bigl(4x+(k-1)\frac{\pi}{2}+\frac{\pi}{2}\bigr)\\
&=-4^{k+1-1}\cdot\sin\bigl(4x+(k+1-1)\frac{\pi}{2}\bigr)\\
\end{split}
\]

因此归纳假设成立.

当然, 也可以写为

\[
y^{(n)}=-4^{n-1}\cdot\sin\bigl(4x+(n-1)\frac{\pi}{2}\bigr)=4^{n-1}\cdot\cos\bigl(4x+\frac{n\pi}{2}\bigr).
\]

3

Posted by haifeng on 2020-10-28 16:22:54

4.  (6)

\[
y=\frac{1}{x^2-1}=\frac{1}{2}\Bigl(\frac{1}{x-1}-\frac{1}{x+1}\Bigr)
\]

\[
\begin{aligned}
y'&=\frac{1}{2}\Bigl(-(x-1)^{-2}+(x+1)^{-2}\Bigr)\\
y''&=\frac{1}{2}\Bigl((-1)(-2)(x-1)^{-3}+(-2)(x+1)^{-3}\Bigr)\\
y'''&=\frac{1}{2}\Bigl((-1)(-2)(-3)(x-1)^{-4}+(-2)(-3)(x+1)^{-4}\Bigr)\\
y^{(4)}&=\frac{1}{2}\Bigl((-1)(-2)(-3)(-4)(x-1)^{-5}+(-2)(-3)(-4)(x+1)^{-5}\Bigr)\\
&\vdots
\end{aligned}
\]

因此, 归纳假设

\[
y^{(n)}=\frac{1}{2}\cdot(-1)^n\cdot n!\Bigl((x-1)^{-(n+1)}-(x+1)^{-(n+1)}\Bigr)
\]

 

证明略.