Answer

问题及解答

[Homework] 2.2

Posted by haifeng on 2020-10-26 13:32:52 last update 2020-10-26 13:32:52 | Edit | Answers (2)

P. 81

2. 求下列函数的导数

(12)  $y=\dfrac{1-\sin\sqrt{x}}{1+\sin\sqrt{x}}$

 

(17)  $y=x\arcsin\frac{x}{2}+\sqrt{4-x^2}$

 

 

7.  求下列分段函数的导数:

(1)  $f(x)=\begin{cases}\dfrac{\sqrt{1+x^2}-1}{x}, & x\neq 0,\\ 0, & x=0.\end{cases}$

 

1

Posted by haifeng on 2020-10-26 17:38:32

2.

(12)

\[
\begin{split}
y'&=\frac{(1-\sin\sqrt{x})'\cdot(1+\sin\sqrt{x})-(1-\sin\sqrt{x})\cdot(1+\sin\sqrt{x})'}{(1+\sin\sqrt{x})^2}\\
&=\frac{-\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}\cdot(1+\sin\sqrt{x})-(1-\sin\sqrt{x})\cdot\cos\sqrt{x}\cdot\frac{1}{2\sqrt{x}}}{(1+\sin\sqrt{x})^2}\\
&=\frac{-\cos\sqrt{x}\cdot\bigl[(1+\sin\sqrt{x})+(1-\sin\sqrt{x})\bigr]}{2\sqrt{x}(1+\sin\sqrt{x})^2}\\
&=\frac{-\cos\sqrt{x}}{\sqrt{x}(1+\sin\sqrt{x})^2}\\
&=-\frac{\cos\sqrt{x}\cdot(1-\sin\sqrt{x})^2}{\sqrt{x}\cdot\cos^4\sqrt{x}}\\
&=-\frac{(1-\sin\sqrt{x})^2}{\sqrt{x}\cdot\cos^3\sqrt{x}}
\end{split}
\]

 


(17)

\[
\begin{split}
y'&=1\cdot\arcsin\frac{x}{2}+x\cdot\frac{1}{\sqrt{1-(\frac{x}{2})^2}}\cdot\frac{1}{2}+\frac{1}{2\sqrt{4-x^2}}\cdot(-2x)\\
&=\arcsin\frac{x}{2}+\frac{x}{\sqrt{4-x^2}}-\frac{x}{\sqrt{4-x^2}}\\
&=\arcsin\frac{x}{2}
\end{split}
\]

2

Posted by haifeng on 2020-10-26 17:50:12

对于 $x\neq 0$, 

\[
\begin{split}
f'(x)&=\frac{\frac{1}{2\sqrt{1+x^2}}\cdot 2x\cdot x-(\sqrt{1+x^2}-1)\cdot 1}{x^2}\\
&=\frac{1}{\sqrt{1+x^2}}-\frac{\sqrt{1+x^2}-1}{x^2}\\
&=\frac{x^2-(1+x^2-\sqrt{1+x^2})}{x^2\cdot\sqrt{1+x^2}}\\
&=\frac{\sqrt{1+x^2}-1}{x^2\sqrt{1+x^2}}
\end{split}
\]

 

对于 $x=0$,

\[
\begin{split}
f'(0)&=\lim_{x\rightarrow 0}\frac{f(x)-f(0)}{x-0}\\
&=\lim_{x\rightarrow 0}\frac{\frac{\sqrt{1+x^2}-1}{x}-0}{x}\\
&=\lim_{x\rightarrow 0}\frac{\sqrt{1+x^2}-1}{x^2}\\
&=\lim_{x\rightarrow 0}\frac{1+x^2-1}{x^2(\sqrt{1+x^2}+1)}\\
&=\lim_{x\rightarrow 0}\frac{1}{\sqrt{1+x^2}+1}\\
&=\frac{1}{2}
\end{split}
\]

当然这里也可以使用等价无穷小代换 $\sqrt{1+x^2}-1\sim\frac{1}{2}x^2$ (当 $x\rightarrow 0$ 时).