Answer

问题及解答

解方程 $x(1+y^2)\mathrm{d}x-(1+x^2)y\mathrm{d}y=0$

Posted by haifeng on 2019-07-11 20:49:47 last update 2019-07-11 20:50:42 | Edit | Answers (1)

解方程 $x(1+y^2)\mathrm{d}x-(1+x^2)y\mathrm{d}y=0$.

1

Posted by haifeng on 2019-07-12 16:13:04

\[
\begin{split}
&x(1+y^2)\mathrm{d}x=(1+x^2)y\mathrm{d}y\\
\Rightarrow\ &\frac{x\mathrm{d}x}{1+x^2}=\frac{y\mathrm{d}y}{1+y^2}\\
\Rightarrow\ &\int\frac{x\mathrm{d}x}{1+x^2}=\int\frac{y\mathrm{d}y}{1+y^2}\\
\Rightarrow\ &\frac{1}{2}\int\frac{\mathrm{d}x^2}{1+x^2}=\frac{1}{2}\int\frac{\mathrm{d}y^2}{1+y^2}\\
\Rightarrow\ &\int\frac{\mathrm{d}(1+x^2)}{1+x^2}=\int\frac{\mathrm{d}(1+y^2)}{1+y^2}\\
\Rightarrow\ &\ln(1+x^2)=\ln(1+y^2)+C\\
\Rightarrow\ &1+x^2=e^C\cdot(1+y^2).
\end{split}
\]

因此, 解为 $1+y^2=C(1+x^2)$, 这里 $C > 0$.