Answer

问题及解答

计算不定积分 $\displaystyle\int\frac{1}{1-\sin x}dx$

Posted by haifeng on 2017-12-29 11:40:25 last update 2021-11-14 23:06:26 | Edit | Answers (3)

计算不定积分

\[
\int\frac{1}{1-\sin x}dx
\]

 

\[
\int\frac{1}{1+\sin x}dx
\]

 

关于

\[
\int\frac{1+\sin x}{1-\sin x}dx
\]
 

参见问题 1450

1

Posted by haifeng on 2021-11-14 23:16:28

\[
\begin{split}
\int\frac{1}{1-\sin x}dx&=\int\frac{1+\sin x}{1-\sin^2 x}dx\\
&=\int\frac{1+\sin x}{\cos^2 x}dx\\
&=\int(1+\sin x)\sec^2 xdx\\
&=\int(1+\sin x)d\tan x\\
&=(1+\sin x)\tan x-\int\tan x d(1+\sin x)\\
&=(1+\sin x)\tan x-\int\tan x \cos x dx\\
&=(1+\sin x)\tan x-\int\sin x dx\\
&=(1+\sin x)\tan x+\cos x+C
\end{split}
\]
 

最后这个式子可以化简为

\[
\tan x+\frac{1}{\cos x}+C
\]

2

Posted by haifeng on 2021-11-14 23:13:53

\[
\begin{split}
\int\frac{1}{1+\sin x}\mathrm{d}x&=\int\frac{1-\sin x}{1-\sin^2 x}\mathrm{d}x\\
&=\int\frac{1-\sin x}{\cos^2 x}\mathrm{d}x=\int\sec^2 x\mathrm{d}x+\int\frac{\mathrm{d}\cos x}{\cos^2 x}\\
&=\tan x-\frac{1}{\cos x}+C
\end{split}
\]

类似的

\[
\int\frac{1}{1-\sin x}\mathrm{d}x=\tan x+\frac{1}{\cos x}+C
\]

3

Posted by haifeng on 2021-11-14 23:24:52

\[
\begin{split}
\int\frac{1+\sin x}{1-\sin x}\mathrm{d}x&=\int\biggl(\frac{1}{1-\sin x}+\frac{\sin x-1}{1-\sin x}+\frac{1}{1-\sin x}\biggr)\mathrm{d}x\\
&=2\int\frac{1}{1-\sin x}\mathrm{d}x-\int 1\mathrm{d}x
\end{split}
\]

利用前面的结论,

\[\int\frac{1}{1-\sin x}\mathrm{d}x=\tan x+\sec x+C.\]

因此,

\[\int\frac{1+\sin x}{1-\sin x}\mathrm{d}x=2\tan x+2\sec x-x+C\]