计算不定积分 $\displaystyle\int\sqrt{\frac{1+x}{1-x}}dx$
计算不定积分
\[
\int\sqrt{\frac{1+x}{1-x}}dx
\]
[Hint] 被积函数形如 $\sqrt[n]{\dfrac{ax+b}{cx+d}}$ 的可以整体令为 $t$.
Remark:
相关题目参见: 问题2047
计算不定积分
\[
\int\sqrt{\frac{1+x}{1-x}}dx
\]
[Hint] 被积函数形如 $\sqrt[n]{\dfrac{ax+b}{cx+d}}$ 的可以整体令为 $t$.
Remark:
相关题目参见: 问题2047
1
令 $t=\sqrt{\dfrac{1+x}{1-x}}$, 则 $\dfrac{1+x}{1-x}=t^2$, 推出 $1+x=t^2- xt^2$. 得
\[
x=\frac{t^2-1}{t^2+1}
\]
\[
x'_t=\frac{2t\cdot(t^2+1)-(t^2-1)\cdot 2t}{(t^2+1)^2}=\frac{4t}{(t^2+1)^2}
\]
于是 $\mathrm{d}x=\dfrac{4t}{(t^2+1)^2}\mathrm{d}t$.
因此,
\[
\int\sqrt{\frac{1+x}{1-x}}\mathrm{d}x=\int t\cdot\frac{4t}{(t^2+1)^2}\mathrm{d}t=\int\frac{4t^2}{(t^2+1)^2}\mathrm{d}t
\]
而
\[
\begin{split}
\int\frac{t^2}{(t^2+1)^2}\mathrm{d}t&=\int\frac{t^2+1-1}{(t^2+1)^2}\mathrm{d}t\\
&=\int\frac{1}{t^2+1}\mathrm{d}t-\int\frac{1}{(t^2+1)^2}\mathrm{d}t\\
&=\arctan t-\int\frac{1}{(t^2+1)^2}\mathrm{d}t\\
\end{split}
\]