Answer

问题及解答

求极限 $\lim_{n\rightarrow\infty}\frac{1}{n}\sum_{i=1}^{n}\frac{i}{2^i}$.

Posted by haifeng on 2017-05-30 13:00:28 last update 2017-05-30 13:00:28 | Edit | Answers (1)

求极限

\[
\lim_{n\rightarrow\infty}\frac{1}{n}(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\cdots+\frac{n}{2^n})
\]

1

Posted by haifeng on 2017-05-30 13:05:51

\[
S_n=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\cdots+\frac{n}{2^n},
\]

\[
2S_n=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+\cdots+\frac{n}{2^{n-1}},
\]

两式相减, 得

\[
\begin{split}
S_n&=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\cdots+\frac{1}{2^{n-1}}-\frac{n}{2^n}\\
&=\frac{1-(\frac{1}{2})^n}{1-\frac{1}{2}}-\frac{n}{2^n}.
\end{split}
\]

于是

\[
\lim_{n\rightarrow\infty}\frac{1}{n}S_n=\lim_{n\rightarrow\infty}\frac{1}{n}\biggl[2(1-(\frac{1}{2})^n)-\frac{n}{2^n}\biggr]=0.
\]