解方程 $\frac{dy}{dx}=P_0(x)+P_1(x)y+P_2(x)y^2$.
解方程
\[\frac{dy}{dx}=P_0(x)+P_1(x)y+P_2(x)y^2.\]
解方程
\[\frac{dy}{dx}=P_0(x)+P_1(x)y+P_2(x)y^2.\]
1
如果 $P_0(x)\equiv 0$, 则方程是 Bernoulli 方程.
一般的, 可以通过变量替换, 使方程化为 Bernoulli 方程.
令 $z(x)=y(x)-\lambda$, 则 $y=z+\lambda$, $\frac{dz}{dx}=\frac{dy}{dx}$. 原方程化为
\[
\begin{split}
\frac{dz}{dx}&=P_0(x)+P_1(x)(z+\lambda)+P_2(x)(z+\lambda)^2\\
&=\Bigl[P_0(x)+P_1(x)\lambda+P_2(x)\lambda^2\Bigr]+(P_1(x)+2\lambda P_2(x))z+P_2(x)z^2
\end{split}
\]
令 $P_0(x)+P_1(x)\lambda+P_2(x)\lambda^2=0$, 求出 $\lambda$, 则原方程在变换 $z=y-\lambda$ 下化为 Bernoulli 方程.