Answer

问题及解答

设 $G\subset\mathrm{GL}(n)=\mathrm{GL}(n,\mathbb{K})$, 则 $\mathfrak{g}\subset\mathfrak{gl}(n)$. 交换子(commutator)由下式给出 $[x,y]=xy-yx$.

Posted by haifeng on 2017-04-24 17:46:14 last update 2017-04-24 17:46:14 | Edit | Answers (1)

设 $G\subset\mathrm{GL}(n)=\mathrm{GL}(n,\mathbb{K})$, 则 $\mathfrak{g}\subset\mathfrak{gl}(n)$. 且交换子(commutator)由下式给出

\[
[x,y]=xy-yx.
\]

 

1

Posted by haifeng on 2017-04-24 19:51:57

对于 $x\in\mathfrak{gl}(n)$, $\exp(x)=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots$, (这里 $1$ 表示单位矩阵.) 因此

\[
\begin{split}
&\exp(x)\exp(y)\exp(x^{-1})\exp(y^{-1})\\
=&(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots)(1+y+\frac{y^2}{2!}+\frac{y^3}{3!}+\cdots)(1-x+\frac{x^2}{2!}-\frac{x^3}{3!}+\cdots)(1-y+\frac{y^2}{2!}-\frac{y^3}{3!}+\cdots)
\end{split}
\]

为简单起见, 我们计算

\[
\begin{split}
&(1+x+\frac{1}{2}x^2)(1+y+\frac{1}{2}y^2)(1-x+\frac{1}{2}x^2)(1-y+\frac{1}{2}y^2)\\
=&\Bigl(1+y+\frac{1}{2}y^2+x+xy+\frac{1}{2}xy^2+\frac{1}{2}x^2+\frac{1}{2}x^2 y+\frac{1}{4}x^2y^2\Bigr)\Bigl(1-y+\frac{1}{2}y^2-x+xy-\frac{1}{2}xy^2+\frac{1}{2}x^2-\frac{1}{2}x^2 y+\frac{1}{4}x^2y^2\Bigr)\\
=&\Bigl(1+x+y+xy+\frac{1}{2}(x^2+y^2)+\frac{1}{2}xy^2+\frac{1}{2}x^2y+\frac{1}{4}x^2 y^2\Bigr)\Bigl(1-x-y+xy+\frac{1}{2}(x^2+y^2)-\frac{1}{2}xy^2-\frac{1}{2}x^2y+\frac{1}{4}x^2 y^2\Bigr)\\
=&\Bigl(1+x+y+xy+\frac{1}{2}(x^2+y^2)+\cdots\Bigr)\Bigl(1-(x+y)+xy+\frac{1}{2}(x^2+y^2)+\cdots\Bigr)\\
=&1-(x+y)+xy+\frac{1}{2}(x^2+y^2)\\
&\quad+(x+y)-(x+y)(x+y)+(x+y)xy+(x+y)\frac{1}{2}(x^2+y^2)\\
&\qquad+xy-xy(x+y)+xyxy+xy\frac{1}{2}(x^2+y^2)\\
&\quad\qquad+\frac{1}{2}(x^2+y^2)-\frac{1}{2}(x^2+y^2)(x+y)+\frac{1}{2}(x^2+y^2)xy+\frac{1}{4}(x^2+y^2)^2+\cdots\\
=&1+2xy+x^2+y^2-(x+y)(x+y)+\cdots\\
=&1+xy-yx+\cdots
\end{split}
\]

这里 $\cdots$ 表示所有阶数大于等于 3 的项.

根据交换子的性质

\[
\exp(x)\exp(y)\exp(x^{-1})\exp(y^{-1})=\exp([x,y]+\cdots),
\]

(这里 $\cdots$ 代表阶大于等于 3 的项.)

因此 $\exp([x,y]+\cdots)=I+(xy-yx)+\cdots$, 因此 $[x,y]=xy-yx$.