Riccati 方程
\[
\frac{dy}{dx}-\frac{2y}{x}=-x^2 y^2.
\]
[Hint] 注意 $(\frac{1}{y})'=-\frac{1}{y^2}y'$.
\[
\frac{dy}{dx}-\frac{2y}{x}=-x^2 y^2.
\]
[Hint] 注意 $(\frac{1}{y})'=-\frac{1}{y^2}y'$.
1
方程两边除以 $-y^2$, 并注意到 $(\frac{1}{y})'=-\frac{1}{y^2}y'$, 得
\[
(\frac{1}{y})'+\frac{2}{x}\frac{1}{y}=x^2.
\]
于是令 $u=\frac{1}{y}$, 得
\[
u'+\frac{2}{x}u=x^2
\]
根据一阶线性常微分方程的求解公式, 得
\[
\begin{split}
u(x)&=e^{-\int\frac{2}{x}dx}\biggl[\int x^2\cdot e^{\int\frac{2}{x}dx}+C\biggr]\\
&=e^{-2\ln |x|}\biggl[\int x^2\cdot\int e^{2\ln |x|}+C\biggr]\\
&=\frac{1}{x^2}\biggl[\int x^2\cdot x^2 dx+C\biggr]\\
&=\frac{\frac{1}{5}x^5+C}{x^2}
\end{split}
\]
因此,
\[
y(x)=\frac{1}{u(x)}=\frac{x^2}{\frac{1}{5}x^5+C}.
\]