Answer

问题及解答

设 $f\in C^1[a,b]$, 且 $f(a)=0$, 讨论 $f$ 与 $f'(x)$ 的关系.

Posted by haifeng on 2017-03-14 08:52:58 last update 2017-03-14 09:56:48 | Edit | Answers (1)

设 $f\in C^1[a,b]$, 且 $f(a)=0$, 证明

\[
\sup_{x\in[a,b]}|f(x)|\leqslant\sqrt{b-a}\cdot\sqrt{\int_a^b (f'(x))^2 dx}.
\]

 

特别的, 如果 $a=0, b=1$, 则有 $\sup_{x\in[0,1]}|f(x)|\leqslant\sqrt{\int_0^1 (f'(x))^2 dx}.$ (见问题1863)


References:

Paulo Ney de Souza, Jorge-Nuno Silva, Berkeley Problems in Mathematics,Third Edition.

1

Posted by haifeng on 2017-03-14 08:59:52

由 Newton Leibniz 公式,

\[
f(x)-f(a)=\int_a^x f'(t)dt,
\]

以及 $f(a)=0$, 可得

\[
\begin{split}
|f(x)|&\leqslant |\int_a^x f'(t)dt|\\
​&\leqslant\sqrt{\int_a^x |f'(t)|^2 dt}\cdot\sqrt{\int_a^x 1^2 dt}\\
​&\leqslant\sqrt{\int_a^x |f'(t)|^2 dt}\sqrt{x-a}.
​\end{split}
\]

因此有

\[
\sup_{x\in[a,b]}|f(x)|\leqslant\sqrt{b-a}\sqrt{\int_a^x |f'(t)|^2 dt}.
\]