Answer

问题及解答

Minkowski 不等式

Posted by haifeng on 2016-08-20 16:05:16 last update 2022-06-21 00:24:58 | Edit | Answers (1)

Minkowski 不等式

设 $f$ 是 $[a,b]\times[c,d]$ 上的非负连续函数. $p\geqslant 1$. 则有

\[
\biggl(\int_a^b\Bigl(\int_c^d f(x,y)dy\Bigr)^p dx\biggr)^{\frac{1}{p}}\leqslant\int_c^d\Bigl(\int_a^b f^p(x,y)dx\Bigr)^{\frac{1}{p}}dy.
\]

当 $p>1$ 时, 等式成立的充分必要条件是

\[
f(x,y)=u(x)v(y).
\]

 


利用 Minkowski 不等式, 证明

\[
\biggl(\sum_{k=1}^{n}(a_k+b_k)^p\biggr)^{\frac{1}{p}}\leqslant\biggl(\sum_{k=1}^{n}a_k^p\biggr)^{\frac{1}{p}}+\biggl(\sum_{k=1}^{n}b_k^p\biggr)^{\frac{1}{p}}.
\]

 

[Hint]

令 $f(k,i)=i_k$,  其中 $i=a$ 或 $b$; $k=1,2,\ldots,n$.

 

可参考 

real analysis - A kind of Minkowski inequality for integral - Mathematics Stack Exchange

 

1

Posted by haifeng on 2022-06-20 21:51:35

首先, 当 $f(x,y)$ 可分离变量时, 等号显然成立. 

令 $f(x,y)=u(x)v(y)$, 则

\[
\begin{split}
LHS&=\biggl[\int_a^b\biggl(\int_c^d u(x)v(y)\mathrm{d}y\biggr)^p\mathrm{d}x\biggr]^{1/p}\\
&=\biggl[\int_a^b u^p(x)\biggl(\int_c^d v(y)\mathrm{d}y\biggr)^p\mathrm{d}x\biggr]^{1/p}\\
&=\biggl[\biggl(\int_c^d v(y)\mathrm{d}y\biggr)^p\cdot\int_a^b u^p(x)\mathrm{d}x\biggr]^{1/p}\\
&=\int_c^d v(y)\mathrm{d}y\cdot\biggl[\int_a^b u^p(x)\mathrm{d}x\biggr]^{1/p}.
\end{split}
\]

 

\[
\begin{split}
RHS&=\int_c^d \biggl(\int_a^b u^p(x)\cdot v^p(y)\mathrm{d}x\biggr)^{1/p}\mathrm{d}y\\
&=\int_c^d v(y)\cdot\biggl(\int_a^b u^p(x)\mathrm{d}x\biggr)^{1/p}\mathrm{d}y\\
&=\biggl(\int_a^b u^p(x)\mathrm{d}x\biggr)^{1/p}\cdot\int_c^d v(y)\mathrm{d}y.
\end{split}
\]

因此, 不等式中的等号成立.