Answer

问题及解答

求不定积分 $\int\frac{e^{-\frac{x}{2}}(\cos x-\sin x)}{\sqrt{\sin x}}dx$.

Posted by haifeng on 2016-04-29 04:31:58 last update 2016-04-29 04:33:28 | Edit | Answers (1)

\[
\int\frac{e^{-\frac{x}{2}}(\cos x-\sin x)}{\sqrt{\sin x}}dx
\]

 


[Hint] Note that 

\[
(\sqrt{\sin x})'=\frac{\cos x}{2\sqrt{\sin x}}.
\]

1

Posted by haifeng on 2016-04-29 04:38:34

\[
\begin{split}
\int\frac{e^{-\frac{x}{2}}(\cos x-\sin x)}{\sqrt{\sin x}}dx &=\int e^{-\frac{x}{2}}\frac{\cos x}{\sqrt{\sin x}}dx-\int e^{-\frac{x}{2}}\sqrt{\sin x}dx\\
&=2\int e^{-\frac{x}{2}}d\sqrt{\sin x}-\int e^{-\frac{x}{2}}\sqrt{\sin x}dx\\
&=2\biggl[e^{-\frac{x}{2}}\sqrt{\sin x}-\int\sqrt{\sin x}de^{-\frac{x}{2}}de^{-\frac{x}{2}}\biggr]-\int e^{-\frac{x}{2}}\sqrt{\sin x}dx\\
&=2e^{-\frac{x}{2}}\sqrt{\sin x}-2\int\sqrt{\sin x}e^{-\frac{x}{2}}(-\frac{1}{2})dx-\int e^{-\frac{x}{2}}\sqrt{\sin x}dx+C\\
&=2e^{-\frac{x}{2}}\sqrt{\sin x}+C
\end{split}
\]