Answer

问题及解答

求常微分方程 $\frac{y}{x}\cdot\frac{dy}{dx}=\frac{1+x^2 y^2}{1-x^2 y^2}$.

Posted by haifeng on 2016-04-02 23:52:55 last update 2016-04-02 23:58:24 | Edit | Answers (0)

\[
\frac{y}{x}\cdot\frac{dy}{dx}=\frac{1+x^2 y^2}{1-x^2 y^2}
\]

 

令 $u=x^2$, $v=y^2$, 则方程化为一阶非线性常微分方程: 

\[
\frac{dv}{du}=\frac{1+uv}{1-uv}.
\]