Answer

问题及解答

Abel 和(Abel's summation formula)

Posted by haifeng on 2015-12-07 17:54:58 last update 2015-12-07 18:25:58 | Edit | Answers (0)

Abel 和

Abel 和实际上是 Riemann-Stieljtes 积分的分部积分情形, 由于可以引入一个 $C^1$-光滑函数, 因此在数论中应用十分广泛.

设 $\{a_n\}$ 是一列实数或复数, 记 $A(x)=\sum_{1\leqslant n\leqslant x}a_n$, $\phi(x)$ 是 $C^1$-光滑函数. 则有

\[
\sum_{1\leqslant n\leqslant x}a_n\phi(n)=A(x)\phi(x)-\int_{1}^{x}A(u)\phi'(u)du.
\]

 


事实上,

\[
\begin{split}
\int_{1}^{x}A(u)\phi'(u)du &=\int_{1}^{x}A(u)d\phi(u)=A(u)\phi(u)\Bigr|_{1}^{x}-\int_{1}^{x}\phi(u)dA(u)\\
&=A(x)\phi(x)-A(1)\phi(1)-\int_{1}^{x}\phi(u)dA(u)
\end{split}
\]

这里 $\int_{1}^{x}\phi(u)dA(u)$ 是 Riemann-Stieltjes 积分, 因此

\[
\int_{1}^{x}\phi(u)dA(u)=\lim_{\pi}S(\pi,\phi,A)=\lim_{\pi}\sum_{i=0}^{n+1}\phi(c_i)(A(u_{i+1})-A(u_i))
\]

其中 $\pi$ 是 $[1,x]$ 的任意划分, $1=u_0 < u_1 < \cdots < u_{n}=x$. 其中 $c_i\in[u_i,u_{i+1}]$.

特别的, 取 $u_i=i+1$, 得 $A(u_{i+1})-A(u_i)=a_{i+2}$, 且令 $c_i=i+2$, 于是有

\[
\int_{1}^{x}\phi(u)dA(u)=\sum_{i=0}^{n-1}\phi(i+2)a_{i+2}=\sum_{i=1}^{n}\phi(i+1)a_{i+1}.
\]

因此,

\[
A(x)\phi(x)-\int_{1}^{x}A(u)\phi'(u)du=A(1)\phi(1)+\int_{1}^{x}\phi(u)dA(u)=\sum_{i=1}^{n+1}\phi(i)a_{i}=\sum_{1\leqslant n\leqslant x}a_n\phi(n).
\]

 


References:

https://en.wikipedia.org/wiki/Abel%27s_summation_formula