Answer

问题及解答

证明微分流形转换映射的 Jacobi 行列式在定义域内是处处非零的.

Posted by haifeng on 2015-07-19 16:02:48 last update 2015-07-19 16:02:48 | Edit | Answers (1)

证明微分流形转换映射的 Jacobi 行列式在定义域内是处处非零的.

1

Posted by haifeng on 2015-07-20 11:43:43

这是由于局部坐标变换即转换映射是可逆的, 根据偏导数的链式法则即可证明转换映射的 Jacobi 行列式在定义域内处处非零, 或者等价地说 Jacobi 矩阵是非退化的.

具体地, 用分量表示转换映射如下:

\[
\varphi_{\beta}\circ\varphi_{\alpha}^{-1}(x)=(y^1,y^2,\ldots,y^n),
\]

其中 $x=(x^1,x^2,\ldots,x^n)\in\varphi_{\alpha}(U_{\alpha}\cap U_{\beta})$, $y^i(1\leqslant i\leqslant n)$ 是关于 $x^j$ 的函数 $(1\leqslant j\leqslant n)$. 记转换映射 $\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ 的 Jacobi 矩阵为

\[
J(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})=(\frac{\partial y^i}{\partial x^j})_{n\times n},
\]

Jacobi 行列式记为

\[
\det J(\varphi_{\beta}\circ\varphi_{\alpha}^{-1})(p)=\frac{\partial(y^1,y^2,\ldots,y^n)}{\partial(x^1,x^2,\ldots,x^n)}(\varphi_{\alpha}(p)),\quad p\in U_{\alpha}\cap U_{\beta}.
\]


$\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$ 的逆映射是 $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$, 其局部表示为

\[
\varphi_{\alpha}\circ\varphi_{\beta}^{-1}(y)=(x^1,x^2,\ldots,x^n),
\]

转换映射 $\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$ 的 Jacobi 矩阵为

\[
J(\varphi_{\alpha}\circ\varphi_{\beta}^{-1})=(\frac{\partial x^j}{\partial y^i})_{n\times n},
\]


若记 $f=\varphi_{\beta}\circ\varphi_{\alpha}^{-1}$, $g=\varphi_{\alpha}\circ\varphi_{\beta}^{-1}$, 则 $\text{id}=f\circ g=g\circ f$. 根据复合映射的链式求导法则, 可得

\[
I=J\text{id}=Jf\cdot Jg.
\]

详细地, 若记 $y^i=f_i(x^1,\ldots,x^n)$, $x^j=g_j(y^1,\ldots,y^n)$, 则

\[
\begin{pmatrix}
\frac{\partial y^1}{\partial y^1} &\cdots & \frac{\partial y^1}{\partial y^n} \\
\vdots & \cdots &\vdots\\
\frac{\partial y^n}{\partial y^1} &\cdots & \frac{\partial y^n}{\partial y^n} \\
\end{pmatrix}=
\begin{pmatrix}
\frac{\partial y^1}{\partial x^1} &\cdots & \frac{\partial y^1}{\partial x^n} \\
\vdots & \cdots &\vdots\\
\frac{\partial y^n}{\partial x^1} &\cdots & \frac{\partial y^n}{\partial x^n} \\
\end{pmatrix}\cdot
\begin{pmatrix}
\frac{\partial x^1}{\partial y^1} &\cdots & \frac{\partial x^1}{\partial y^n} \\
\vdots & \cdots &\vdots\\
\frac{\partial x^n}{\partial y^1} &\cdots & \frac{\partial x^n}{\partial y^n} \\
\end{pmatrix}.
\]

从而, Jacobi 矩阵在每一点都是非退化的.