Sobolev 空间 $W^{k,p}$ 的定义
\[
W^{k,p}(\mathbb{R}):=\{f\in L^p(\mathbb{R})\mid f, f^{(1)},\ldots, f^{(k)} \in L^p(\mathbb{R})\}
\]
也就是说 $W^{k,p}$ 是 $L^p$ 的一个子集, 要求函数 $f$ 及它的直到 $k$ 阶弱导数均具有有限的 $L^p$ 范数. 这里 $p\in[1,+\infty]$.
当 $p=2$ 时, 记 $H^k :=W^{k,2}$. 此时 $H^k$ 是一个 Hilbert 空间.
(这里考虑弱导数, 是因为了此空间是完备的, 从而是一个 Banach 空间.)
一般的, 设 $\Omega\subset\mathbb{R}^n$, $m$ 是非负整数, $1\leqslant p < \infty$, 称集合
\[
W^{m,p}(\Omega):=\{u\in L^p(\Omega)\mid \tilde{\partial}^{\alpha}u\in L^p(\Omega),\ |\alpha|\leqslant m\}
\]
按模
\[
\|u\|_{m,p}=\Bigl(\sum_{|\alpha|\leqslant m}\|\tilde{\partial}^{\alpha}u\|^p_{L^p(\Omega)}\Bigr)^{1/p}
\]