求 $\int\frac{x^2}{(1-x)^{100}}dx$.
求
\[\int\frac{x^2}{(1-x)^{100}}dx.\]
求
\[\int\frac{x^2}{(1-x)^{100}}dx.\]
1
令 $t=x-1$, 则 $x=t+1$, $dx=dt$, 从而
\[
\begin{split}
\int\frac{x^2}{(1-x)^{100}}dx&=\int\frac{(t+1)^2}{t^{100}}dt\\
&=\int(t^2+2t+1)t^{-100}dt\\
&=\int(t^{-98}+2t^{-99}+t^{-100})dt\\
&=-\frac{1}{97}t^{-97}-\frac{2}{98}t^{-98}-\frac{1}{99}t^{-99}+C\\
&=-\frac{1}{97}\frac{1}{(x-1)^{97}}-\frac{1}{49}\frac{1}{(x-1)^{98}}-\frac{1}{99}\frac{1}{(x-1)^{99}}+C.
\end{split}
\]