Answer

问题及解答

求不定积分 $\int\frac{1+\sin x}{1-\sin x}dx$

Posted by haifeng on 2014-12-22 22:30:47 last update 2014-12-22 22:30:47 | Edit | Answers (2)

求不定积分

\[\int\frac{1+\sin x}{1-\sin x}dx\]

1

Posted by haifeng on 2014-12-23 19:35:11

\[
\begin{split}
\int\frac{1+\sin x}{1-\sin x}dx&=\int\frac{(1+\sin x)^2}{1-\sin^2 x}dx\\
&=\int(1+\sin x)^2\sec^2 xdx\\
&=\int(1+\sin x)^2d\tan x\\
&=(1+\sin x)^2\tan x-\int\tan xd(1+\sin x)^2\\
&=(1+\sin x)^2\tan x-2\int\tan x(1+\sin x)\cos xdx\\
&=(1+\sin x)^2\tan x-2\int(\sin x+\sin^2 x)dx\\
&=(1+\sin x)^2\tan x+2\cos x-2\int\sin^2 xdx,
\end{split}
\]

\[
\int\sin^2 xdx=\int\frac{1-\cos 2x}{2}dx=\frac{x}{2}-\frac{1}{4}\sin 2x+C,
\]

因此

\[
\int\frac{1+\sin x}{1-\sin x}dx=(1+\sin x)^2\tan x+2\cos x-x+\frac{1}{2}\sin 2x+C.
\]


下面我们证明

\[
(1+\sin x)^2\tan x+2\cos x+\frac{1}{2}\sin 2x=2\tan x+2\sec x.\tag{*}
\]

从而

\[
\int\frac{1+\sin x}{1-\sin x}dx=2\tan x+2\sec x-x+C.
\]


事实上, 将 (*) 式两边同乘以 $\cos x$, 得

\[
(1+\sin x)^2\sin x+2\cos^2 x+\sin x\cos^2 x=2\sin x+2.
\]

而它等价于

\[
\begin{split}
\Leftrightarrow&(\sin^2 x+2\sin x+1)\sin x+2\cos^2 x+\sin x\cos^2 x=2\sin x+2\\
\Leftrightarrow&\sin x(\sin^2 x+2\sin x+1+\cos^2 x)+2\cos^2 x=2\sin x+2\\
\Leftrightarrow&\sin x(2+2\sin x)+2\cos^2 x=2\sin x+2\\
\Leftrightarrow&2\sin x+2\sin^2 x+2\cos^2 x=2\sin x+2.
\end{split}
\]

2

Posted by haifeng on 2014-12-23 19:11:47

\[
\begin{split}
\int\frac{(1+\sin x)^2}{1-\sin^2 x}dx&=\int\frac{1+2\sin x+\sin^2 x}{\cos^2 x}dx\\
&=\int\frac{2+2\sin x-\cos^2 x}{\cos^2 x}dx\\
&=\int\biggl(\frac{2(1+\sin x)}{\cos^2 x}-1\biggr)dx\\
&=2\int(\sec^2 x+\sec x\tan x)dx-x\\
&=2\tan x+2\sec x-x+C.
\end{split}
\]