求定积分 $\int_0^a x^2\sqrt{a^2-x^2}dx$
求定积分
\[\int_0^a x^2\sqrt{a^2-x^2}dx.\]
求定积分
\[\int_0^a x^2\sqrt{a^2-x^2}dx.\]
1
令 $x=a\sin t$, $t\in[0,\frac{\pi}{2}]$, 则
\[x^2\sqrt{a^2-x^2}dx=a^2\sin^2 t\cdot a\cos t d(a\sin t)=a^4\sin^2 t\cos^2 tdt.\]
于是, 原积分化为
\[
\int_0^{\frac{\pi}{2}}\frac{a^4}{4}\sin^2(2t)dt=\frac{a^4}{4}\int_0^{\frac{\pi}{2}}\frac{1-\cos 4t}{2}dt=\frac{\pi a^4}{16}.
\]