问题及解答
1
令 $x=\sec t$, 不妨设 $t\in(0,\frac{\pi}{2})$, 则原不定积分为
\[
\begin{split}
\int\frac{\sqrt{x^2-1}}{x^2}dx&=\int\frac{\sqrt{\sec^2 t-1}}{\sec^2 t}d\sec t=\int\frac{\tan t\cdot\sec t\cdot\tan t}{\sec^2 t}dt\\
&=\int\tan^2 t\cdot\cos tdt=\int\frac{\sin^2 t}{\cos t}dt\\
&=\int\frac{\sin^2 t\cos t}{\cos^2 t}dt=\int\frac{\sin^2 t}{1-\sin^2 t}d\sin t\\
&\stackrel{y=\sin t}{=}\int\frac{y^2}{1-y^2}dy=\int(\frac{1}{1-y^2}-1)dy\\
&=\frac{1}{2}\int(\frac{1}{1-y}+\frac{1}{1+y})dt-y\\
&=\frac{1}{2}\ln\biggl|\frac{1+y}{1-y}\biggr|-y+C\\
&=\frac{1}{2}\ln\biggl|\frac{1+\sin t}{1-\sin t}\biggr|-\sin t+C\\
&=\frac{1}{2}\ln\biggl|\frac{(1+\sin t)^2}{\cos^2 t}\biggr|-\sin t+C\\
&=\ln\biggl|\frac{1+\sin t}{\cos t}\biggr|-\sin t+C\\
&=\ln |\sec t+\tan t|-\sin t+C,
\end{split}
\]
由于 $\cos t=\frac{1}{x}$, 故 $\sin t=\frac{\sqrt{x^2-1}}{x}$, 因此, 原不定积分为
\[
\ln |x+\sqrt{x^2-1}|-\frac{\sqrt{x^2-1}}{x}+C.
\]