求极限(通项可拆分的情况)
求极限
\[
\lim_{n\rightarrow\infty}\biggl[\frac{3}{1^2\cdot 2^2}+\frac{5}{2^2\cdot 3^2}+\cdots+\frac{2n+1}{n^2(n+1)^2}\biggr]
\]
求极限
\[
\lim_{n\rightarrow\infty}\biggl[\frac{3}{1^2\cdot 2^2}+\frac{5}{2^2\cdot 3^2}+\cdots+\frac{2n+1}{n^2(n+1)^2}\biggr]
\]
1
注意到
\[\frac{2n+1}{n^2(n+1)^2}=\frac{1}{n^2}-\frac{1}{(n+1)^2},\]
因此, 所求极限等于
\[
\lim_{n\rightarrow\infty}\sum_{k=1}^{n}\biggl(\frac{1}{k^2}-\frac{1}{(k+1)^2}\biggr)=\lim_{n\rightarrow\infty}\biggl(1-\frac{1}{(n+1)^2}\biggr)=1.
\]