Answer

问题及解答

求极限 $\lim\limits_{x\rightarrow+\infty}(\sin\sqrt{x+1}-\sin\sqrt{x})$.

Posted by haifeng on 2014-09-22 09:08:26 last update 2014-09-22 09:08:26 | Edit | Answers (1)

求极限 $\lim\limits_{x\rightarrow+\infty}(\sin\sqrt{x+1}-\sin\sqrt{x})$.

1

Posted by haifeng on 2014-09-22 09:12:41

\[
\begin{split}
\sin\sqrt{x+1}-\sin\sqrt{x}&=2\cos\frac{\sqrt{x+1}+\sqrt{x}}{2}\sin\frac{\sqrt{x+1}-\sqrt{x}}{2}\\
&=2\cos\frac{\sqrt{x+1}+\sqrt{x}}{2}\sin\frac{1}{2(\sqrt{x+1}+\sqrt{x})},
\end{split}
\]

因此,

\[
\lim\limits_{x\rightarrow+\infty}(\sin\sqrt{x+1}-\sin\sqrt{x})=\lim\limits_{x\rightarrow+\infty}2\cos\frac{\sqrt{x+1}+\sqrt{x}}{2}\sin\frac{1}{2(\sqrt{x+1}+\sqrt{x})}=0.
\]