求极限
求极限
\[
\lim_{n\rightarrow\infty}\biggl(\frac{1}{n^3+1}+\frac{4}{n^3+2}+\cdots+\frac{n^2}{n^3+n}\biggr)
\]
求极限
\[
\lim_{n\rightarrow\infty}\biggl(\frac{1}{n^3+1}+\frac{4}{n^3+2}+\cdots+\frac{n^2}{n^3+n}\biggr)
\]
1
注意到
\[
\frac{k^2}{n^3+n}\leqslant\frac{k^2}{n^3+k}\leqslant\frac{k^2}{n^3+1},
\]
因此
\[
\sum_{k=1}^{n}\frac{k^2}{n^3+n}\leqslant\sum_{k=1}^{n}\frac{k^2}{n^3+k}\leqslant\sum_{k=1}^{n}\frac{k^2}{n^3+1},
\]
即
\[
\frac{1}{n^3+n}\cdot\frac{1}{6}n(n+1)(2n+1)\leqslant\sum_{k=1}^{n}\frac{k^2}{n^3+k}\leqslant\frac{1}{n^3+1}\cdot\frac{1}{6}n(n+1)(2n+1)
\]
因此使用夹逼准则, 得
\[
\lim_{n\rightarrow\infty}\sum_{k=1}^{n}\frac{k^2}{n^3+k}=\frac{1}{3}.
\]