[Thm](Euclid) 如果 $2^p-1$ 是素数, 则 $2^{p-1}(2^p-1)$ 是一个完全数.
定理(Euclid). 如果 $2^p-1$ 是素数, 则 $2^{p-1}(2^p-1)$ 是一个完全数.
在 Euclid 给出此定理的 2000 年后, Leonhard Euler 证明了此定理的逆命题, 即,
定理(Euler). 每个偶完全数均形如 $2^{n-1}(2^n-1)$. 这里 $2^n-1$ 是素数.
Open question:
是否存在奇完全数?
欢迎来到这里, 这是一个学习数学、讨论数学的网站.
请输入问题号, 例如: 2512
|
IMAGINE, THINK, and DO How to be a scientist, mathematician and an engineer, all in one? --- S. Muthu Muthukrishnan |
Local Notes 是一款 Windows 下的笔记系统.
Sowya 是一款运行于 Windows 下的计算软件.
下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)
注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.
欢迎注册, 您的参与将会促进数学交流. 注册
在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.
Problèmes d'affichage aléatoires
定理(Euclid). 如果 $2^p-1$ 是素数, 则 $2^{p-1}(2^p-1)$ 是一个完全数.
在 Euclid 给出此定理的 2000 年后, Leonhard Euler 证明了此定理的逆命题, 即,
定理(Euler). 每个偶完全数均形如 $2^{n-1}(2^n-1)$. 这里 $2^n-1$ 是素数.
Open question:
是否存在奇完全数?