首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析
Questions in category: 分析 (Calculus and Analysis).

排序不等式

Posted by haifeng on 2024-07-14 09:27:39 last update 2024-07-14 10:42:20 | Answers (1)


设有两个有序数组 $a_1\leqslant a_2\leqslant\cdots\leqslant a_n$ 及 $b_1\leqslant b_2\leqslant\cdots\leqslant b_n$, 则

\[
\begin{split}
& a_1 b_1+a_2 b_2+\cdots+a_n b_n\quad\text{(顺序和)}\\
\geqslant\ & a_1 b_{j_1}+a_2 b_{j_2}+\cdots a_n b_{j_n}\quad\text{(乱序和)}\\
\geqslant\ & a_1 b_n+a_2 b_{n-1}+\cdots+a_n b_1\quad\text{(反序和)}
\end{split}
\]

其中 $j_1, j_2, \ldots, j_n$ 是 $1,2,\ldots,n$ 的任一排列. 上面不等号成立当且仅当 $a_1=a_2=\cdots=a_n$ 或 $b_1=b_2=\cdots=b_n$.

 


利用排序不等式可证明切比雪夫不等式.