首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

数论 >> 一般数论 >> 初等数论
Questions in category: 初等数论 (Elementary Number Theory).

求正整数 $m$ 的所有可能的约数.

Posted by haifeng on 2024-01-09 09:53:19 last update 2024-01-09 10:08:47 | Answers (0)


设正整数 $m=p_1^{t_1}p_2^{t_2}\cdots p_n^{t_n}$, 这里 $\{p_i\}$ 是 $m$ 的互不相同的素因子. 则 $m$ 的约数 $d$ 必形如

\[
d=p_1^{s_1}p_2^{s_2}\cdots p_n^{s_n},
\]

其中 $0\leqslant s_i\leqslant t_i$, $i=1,2,\ldots,n$. 因此 $m$ 所有可能的约数个数为

\[
\tau(m)=\prod_{i=1}^{n}(t_i+1)=(t_1+1)(t_2+1)\cdots(t_n+1).
\]

 

 

参考[1] P. 19,  定理28.


References:

[1] A. K. 苏什凯维奇  著,  叶乃膺  译 《数论初等教程》