首页

欢迎

 

Welcome

欢迎来到这里, 这是一个学习数学、讨论数学的网站.

转到问题

请输入问题号, 例如: 2512

IMAGINE, THINK, and DO
How to be a scientist, mathematician and an engineer, all in one?
--- S. Muthu Muthukrishnan

Local Notes

Local Notes 是一款 Windows 下的笔记系统.

Local Notes 下载

Sowya

Sowya 是一款运行于 Windows 下的计算软件.

详情

下载 Sowya.7z (包含最新版的 Sowya.exe and SowyaApp.exe)


注: 自 v0.550 开始, Calculator 更名为 Sowya. [Sowya] 是吴语中数学的发音, 可在 cn.bing.com/translator 中输入 Sowya, 听其英语发音或法语发音.





注册

欢迎注册, 您的参与将会促进数学交流. 注册

在注册之前, 或许您想先试用一下. 测试帐号: usertest 密码: usertest. 请不要更改密码.


我制作的 slides

Problem

随机显示问题

Problèmes d'affichage aléatoires

分析 >> 微分方程 >> 常微分方程
Questions in category: 常微分方程 (ODE).

SIR 模型

Posted by haifeng on 2017-04-26 18:14:37 last update 2017-04-26 18:17:53 | Answers (1)


解下面的 ODE 方程组

\[
\left\{
\begin{array}{rcl}
\dfrac{di}{dt}&=&\lambda si-\mu i,\\
\dfrac{ds}{dt}&=&-\lambda si,\\
s(t)+i(t)+r(t)&=&1,\\
i(0)&=&i_0,\\
s(0)&=&s_0,\\
r(0)&=&0.
\end{array}\right.
\]

 

可以先解出

\[
s(t)=s_0 e^{-\sigma r(t)},
\]

这里 $\sigma:=\frac{\lambda}{\mu}$. 从而有

\[
\frac{dr}{dt}=\mu(1-r-s_0 e^{-\sigma r}).
\]

 


References:

姜启源、谢金星、叶俊 编 《数学模型》(第四版)P.140