This slide is based on Selwyn Hollis's work, which can be download from his website.
\[ \ln(xy)=\ln x+\ln y \]
\[ \ln(\frac{1}{x})=-\ln x \]
\[ \ln(\frac{x}{y})=\ln x-\ln y \]
\[ \ln(x^p)=p\ln x. \]
我们证明第一式, 其余类似.
证明: 左边对 $x$ 求导,其中 $y$ 视为常数.
\[ \frac{d}{dx}\ln(xy)=\frac{1}{xy}\cdot y=\frac{1}{x}, \]
右边对 $x$ 求导,
\[ \frac{d}{dx}(\ln x+\ln y)=\frac{1}{x}+0=\frac{1}{x}. \]
当 $x=1$ 时,
\[ \ln(xy)=\ln y, \]
\[ \ln x+\ln y=\ln 1+\ln y=\ln y. \]
因此
\[ \ln(xy)=\ln x+\ln y. \]
$\lim\limits_{x\rightarrow+\infty}\ln x=+\infty,\quad$ 这是因为 $\ \ln(x^p)=p\ln x,\quad$ 从而 $\ \ln(2^x)=x\ln 2$.
$\lim\limits_{x\rightarrow 0^+}\ln x$$\ =$$\lim\limits_{x\rightarrow +\infty}\ln(1/x)$$\ =$$\lim\limits_{x\rightarrow +\infty}(-\ln x)$$\ =-\infty$.
定理: \[ \lim_{x\rightarrow +\infty}\frac{\ln x}{x^r}=0,\quad\forall\ r>0. \]
证明: 选取 $p\in(0,1),\ $ 且 $\ p > 1-r.\ $ 则对于 $\ x > 1$,
$\displaystyle\ln x=\int_1^x\frac{1}{t}dt$ $\displaystyle\ < \int_1^x\frac{1}{t^p}dt $ $\displaystyle\ =\frac{1}{1-p}t^{1-p}\bigg|_1^x $ $\displaystyle\ =\frac{x^{1-p}-1}{1-p},$
$\displaystyle 0 < \frac{\ln x}{x^r}$ $\displaystyle < \frac{x^{1-p-r}-x^{-r}}{1-p} $ $\displaystyle\rightarrow 0, \quad (\mbox{当} x\rightarrow +\infty)$
由夹逼原理知定理成立.
定理: \[ \lim_{x\rightarrow +\infty}\frac{\ln x}{x^r}=0,\quad\forall\ r>0. \]
推论: \[ \lim_{x\rightarrow 0^{+}}x^r\ln x=0,\quad\forall\ r>0. \]
证明:
$\displaystyle\lim_{x\rightarrow 0^+}x^r\ln x$ $\displaystyle\ =\,\lim_{t\rightarrow +\infty}(\frac{1}{t})^r\ln\frac{1}{t}$$\displaystyle\ =\,-\lim_{t\rightarrow +\infty}\frac{\ln t}{t^r}$$\displaystyle\ =\,0.$
图像
性质
\[ \frac{d}{dx}\ln |x|=\frac{1}{x},\quad\forall\ x\neq 0. \]
\[ \int\frac{1}{x}dx=\ln |x|+C. \]
$x^n$ 的不定积分 \[ \int x^n dx= \begin{cases} \frac{1}{n+1}x^{n+1}+C,& 若 n\neq -1,\\ \ln |x|+C,& 若 n=-1. \end{cases} \]
例 1. $\displaystyle\int\frac{x+1}{x^2}dx$$\displaystyle\ =\int(\frac{1}{x}+\frac{1}{x^2})dx$ $\displaystyle\ =\ln |x|-\frac{1}{x}+C.$
例 2. $\displaystyle\int\frac{x}{x^2+1}dx$
令 $u=x^2+1,\ $ 则 $du=2xdx,\ $ 于是
$\displaystyle\int\frac{x}{x^2+1}dx$ $\displaystyle\ =\,\frac{1}{2}\int\frac{1}{u}du$ $\displaystyle\ =\,\frac{1}{2}\ln|u|+C$ $\displaystyle\ =\,\frac{1}{2}\ln|x^2+1|+C.$
例 3.
$\displaystyle\int\tan xdx$ $\displaystyle\ =\,\int\frac{\sin x}{\cos x}dx$ $\displaystyle\ =\,\int\frac{d(-\cos x)}{\cos x}$ $\displaystyle\ =\,-\ln |\cos x|+C$ $\displaystyle\ =\,\ln |\sec x|+C.$
例 4.
$\displaystyle\int\frac{1}{\sqrt{x}(1+\sqrt{x})}dx$ $\displaystyle\ =\,\int\frac{2d\sqrt{x}}{1+\sqrt{x}}$ $\displaystyle\ =\,2\int\frac{d(1+\sqrt{x})}{1+\sqrt{x}}$ $\displaystyle\ =\,2\ln(1+\sqrt{x})+C.$
\[ \frac{d}{dx}\ln |u(x)|=\frac{u'(x)}{u(x)}, \]
\[ \int\frac{u'(x)}{u(x)}dx=\ln |u(x)|+C. \]
例 1.
$\displaystyle\int\frac{\cos x}{\sin x}dx$ $\displaystyle\ =\,\int\frac{d\sin x}{\sin x}$ $\displaystyle\ =\,\ln |\sin x|+C.$
例 2.
$\displaystyle\int\frac{\cos x}{\sin^2 x}dx$ $\displaystyle\ =\,\int\frac{d\sin x}{\sin^2 x}$ $\displaystyle\ =\,\int\frac{du}{u^2}$ $\displaystyle\ =\,-\frac{1}{u}+C$ $\displaystyle\ =\,-\frac{1}{\sin x}+C.$
例. 求 $y=x^{-x}$ 的导数
解. $\displaystyle y = x^{-x},$ 两边取自然对数, $\displaystyle\ln y=\ln x^{-x}=-x\ln x$. 两边对 $x$ 求导,
$\displaystyle\frac{1}{y}\frac{dy}{dx}$ $\displaystyle\ =\,-(1\cdot\ln x+x\cdot\frac{1}{x})$
从而
$\displaystyle\frac{dy}{dx}$ $\displaystyle\ =\,-(\ln x+1)y$ $\displaystyle\ =\,-(\ln x+1)x^{-x}.$
法二
$\displaystyle (x^{-x})'$ $\displaystyle\ =\,(e^{-x\ln x})'$ $\displaystyle\ =\,e^{-x\ln x}\cdot(-x\ln x)'$ $\displaystyle\ =\,x^{-x}\cdot(-1)(1\cdot\ln x+x\cdot\frac{1}{x})$ $\displaystyle\ =\,-x^{-x}(\ln x+1).$